APPLICATIONS OF DEFINITE INTEGRAL

1. Area between Curves:

The area A of the region bounded by the curves $y=f(x), y=g(x)$ and the lines $x=a, x=b$, where f and g are continuous and $f(x) \geq g(x)$ for all x in $[a, b]$, is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

(a) Typical rectangle

(b) Approximating rectangles

Steps to find area between two curves:

1. Sketch the graph of the curves together. This identify the up curve y_{T} and the bottom curve y_{B}
2. Find the limits of integration (if not given in the problem).
3. Write a formula of $[f(x)-g(x)]$ or $\left[y_{T}-y_{B}\right]$ and
 simplify it.
4. Integrate $[f(x)-g(x)]$ from a to b. The number you get it is the area.

Example 1: Find the area of the region enclosed by the parabolas $y=x^{2}$ and

$$
y=2 x-x^{2}
$$

Sol.: We first find the points of intersection of the parabolas by solving their equations simultaneously.

$$
x^{2}=2 x-x^{2} \Rightarrow x^{2}+x^{2}-2 x=0 \Rightarrow 2 x^{2}-2 x=0 \Rightarrow 2 x(x-1)=0
$$

either $2 x=0 \quad \Rightarrow x=0 \quad \Rightarrow \quad y=0$
or $\quad x-1=0 \quad \Rightarrow x=1 \quad \Rightarrow y=1$
The points of intersection are $(0,0)$ and $(1,1)$
We see from Figure that the top and bottom boundaries are

$$
y_{T}=2 x-x^{2} \text { and } y_{B}=x^{2}
$$

The area of a typical rectangle is

$$
d A=y_{T}-y_{B}=\left(2 x-x^{2}\right)-\left(x^{2}\right)=2 x-x^{2}-x^{2}=2 x-2 x^{2}
$$

and the region lies between $x=0$ and $x=1$. So the total area is

$$
A=\int d A=\int_{0}^{1}\left(2 x-2 x^{2}\right) d x=\frac{2 x^{2}}{2}-\left.\frac{2 x^{3}}{3}\right|_{0} ^{1}=\left[(1)^{2}-\frac{2(1)^{3}}{3}\right]-[0]=\frac{1}{3} \text { square units }
$$

If we are asked to find the area between the curves $y=f(x)$ and $y=g(x)$ where $f(x) \geq g(x)$ for some values of x but $g(x) \geq f(x)$ for values of x, then we split the given region S into several regions S_{1}, S_{2}, \ldots with areas A_{1}, A_{2}, \ldots . as shown in Figure. We then define the area of the region S to be the sum of the areas of the smaller regions S_{1}, S_{2}, \ldots that is, $A=A_{1}+A_{2}+\ldots$. Since

$$
|f(x)-g(x)|= \begin{cases}f(x)-g(x) & \text { when } \\ g(x)-f(x) \geq g(x) \\ g \text { when } & g(x) \geq f(x)\end{cases}
$$

Example 2: Find the area of the region bounded by the curves $y=\sin x, y=\cos x, x=0$, and $x=\pi / 2$.

Sol.: The point of intersection occur when $\sin x=\cos x$, that is, when $x=\pi / 4$.

Mathematics

Observe that $\cos x \geq \sin x$ when $0 \leq x \leq \pi / 4$ but $\sin x \geq \cos x$ when $\pi / 4 \leq x \leq \pi / 2$. Therefore the required area is

$$
\begin{aligned}
A & =\int_{0}^{\pi / 2}|\cos x-\sin x| d x=A_{1}+A_{2} \\
& =\int_{0}^{\pi / 4}[\cos x-\sin x] d x+\int_{\pi / 4}^{\pi / 2}[\sin x-\cos x] d x \\
& =[\sin x+\cos x]_{0}^{\pi / 4}+[-\cos x-\sin x]_{\pi / 4}^{\pi / 2} \\
& =\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1\right)+\left(-0-1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \\
& =2 \sqrt{2}-2
\end{aligned}
$$

In this particular example we could have saved some work by noticing that the region is symmetric about $x=\pi / 4$ and so,

$$
A=2 A_{1}=2 \int_{0}^{\pi / 4}[\cos x-\sin x] d x
$$

Integration with respect to \boldsymbol{y} (horizontal strip)

Some regions are best treated by regarding x as a function of y. If a region is bounded by curves with equations $x=f(y), x=g(y), y=c$, and $y=d$, where f and g are continuous and $f(y) \geq g(y)$ for $c \leq y \leq d$ then its area is

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

If we write for the right boundary x_{R} and for the left boundary x_{L}, then we have

$$
A=\int_{c}^{d}\left[x_{R}-x_{L}\right] d y
$$

Example 3: Find the area enclosed by the line $y=x-1$ and the parabola

$$
=2 x+6
$$

Sol.: To find points of intersections put $x_{\text {line }}=x_{\text {curve }}$ so

$$
\begin{gathered}
y+1=\frac{y^{2}-6}{2} \Rightarrow 2(y+1)=y^{2}-6 \Rightarrow y^{2}-2 y-8=0 \\
\Rightarrow(y-4)(y+2)=0 \text { either } y=4 \Rightarrow x=5 \\
\text { or } \quad y=-2 \Rightarrow x=-1
\end{gathered}
$$

$\therefore(5,4)$ and $(-1,-2)$ are the points of intersections of the two curves.
We can notice from Figure that the left and right boundary curves are

$$
x_{R}=y+1 \quad \text { and } \quad x_{L}=\frac{1}{2} y^{2}-3
$$

We must integrate between the appropriate y-values, $y=-2$ and $y=4$. Thus

$$
\begin{aligned}
A & =\int_{-2}^{4}\left[x_{R}-x_{L}\right] d y \\
& =\int_{-2}^{4}\left[(y+1)-\left(\frac{1}{2} y^{2}-3\right)\right] d y \\
& \left.=\int_{-2}^{4}\left[-\frac{1}{2} y^{2}+y+4\right)\right] d y \\
& =\left[-\frac{y^{3}}{2 * 3}+\frac{y^{2}}{2}+4 y\right]_{-2}^{4} \\
& =\left(-\frac{4^{3}}{6}+\frac{4^{2}}{2}+4 * 4\right)-\left(-\frac{(-2)^{3}}{6}+\frac{(-2)^{2}}{2}+4 *(-2)\right) \\
- & \frac{64}{6}+8+16-\frac{8}{6}-2+8=18 \text { square units. }
\end{aligned}
$$

Example 4: Find the area of the region between the curves $x=y^{2}$ and $x=y+2$ in the first quadrant.

Sol.: Graph the curves together
a. Using vertical strip: we should split the are into two areas by the line $x=2$

$$
\therefore A=A_{1}+A_{2}
$$

The area of the first typical rectangle

$$
\begin{aligned}
& d A_{1}=\left(y_{T}-0\right) d x=(\sqrt{x}-0) d x=\sqrt{x} d x \\
& \therefore A_{1}=\int d A_{1}=\int_{0}^{2} \sqrt{x} d x=\left.\frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{2}=\frac{2}{3}\left[2^{3 / 2}-0\right]=1.885618
\end{aligned}
$$

The area of the second typical rectangle

$$
\begin{aligned}
& \quad d A_{2}=\left(y_{T}-y_{B}\right) d x=(\sqrt{x}-(x-2)) d x=(\sqrt{x}-x+2) d x \\
& \therefore A_{2}=\int d A_{2}=\int_{2}^{4}(\sqrt{x}-x+2) d x=\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}+\left.2 x\right|_{2} ^{4} \\
& =\left[\frac{4^{3 / 2}}{3 / 2}-\frac{4^{2}}{2}+2 * 4\right]-\left[\frac{2^{3 / 2}}{3 / 2}-\frac{2^{2}}{2}+2 * 2\right]=1.447715 \\
& \therefore A=1.885618+1.447715=3.333333 \text { square units }
\end{aligned}
$$

b. Using horizontal strip:

The area of the typical rectangle

$$
\begin{aligned}
& d A=\left(x_{R}-x_{L}\right) d y=\left\{(y+2)-y^{2}\right\} d y \\
& \therefore A=\int d A=\int_{0}^{2}\left(y+2-y^{2}\right) d y=\frac{y^{2}}{2}+2 y-\left.\frac{y^{3}}{3}\right|_{0} ^{2} \\
& =\left[\frac{2^{2}}{2}+2 * 2-\frac{2^{3}}{3}\right]-[0]=3.33333 \text { square units }
\end{aligned}
$$

Homework:

1. Find the area between $y=x$ and $y=x^{3}$ from $x=-1$ to $x=1$.
2. Find the area of the "triangle" region bounded by the y-axis and the curves $y=\sin x$ and $y=\cos x$ in the first quadrant.
3. Find the area bounded on the right by $x+y=2$, and on the left by $y=x^{2}$ and below by x-axis.
4. The area of the region between the curve $y=x^{2}$ and the line $y=4$ is divided into equal partitions by the line $y=c$.
a. Find c by integrating with respect to y. (This puts c into the limits of integration).
b. Find c by integrating with respect to x. (This puts c into the integrand as well)
5. Figure below shows triangle $A O C$ inscribed in the region cut from the parabola $y=x^{2}$ by the line $y=a^{2}$. Find the ratio of the area of the triangle to the area of parabolic region.
6. Find the area bounded by:

a. The curve $y=4 x-x^{2}$ and the lines $y=0, x=1$ and $x=3$.
b. The curve $x=1+y^{2}$ and the line $x=10$.
c. The curve $y=9-x^{2}$ and the line $y=x+3$.
d. The curves $y=x^{2}-4, y=8-2 x^{2}$.
e. The curve $y=x^{2}-2$ and the line $y=2$
f. The curve $y=x^{2}-2 x$ and the line $y=x$.
g. The curve $x=3 y-y^{2}$ and the line $x+y=3$
h. The curves $y=x^{2}, y=-x^{2}+4$
i. The curves $y=\cos \frac{\pi x}{2}, y=1-x^{2}$ from $x=0$ to $x=1$
j. The curve $y=\sin \frac{\pi x}{2}$ and the line $y=x$ from $x=-1$ to $x=1$
